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Relationships among coefficients in deterministic and stochastic transient diffusion
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Systems are studied in which transport is possible due to large extensions with open boundaries in certain
directions, but the particles responsible for transport can disappear from it by leaving it in other directions, by
chemical reaction or by adsorption. The connection of the total escape rate, the rate of the disappearance, and
the diffusion coefficient is investigated. It leads to the observation that the diffusion coefficient defined by^x2&
is in general different from the one present in the effective Fokker-Planck equation. The result makes it
possible to generalize the Gaspard-Nicolis formula@Phys. Rev. Lett.65, 1693~1990!# to this transient case in
deterministic systems.@S1063-651X~99!17005-3#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Randomness and diffusion are common features of
tended stochastic and chaotic systems@1–9#. Among deter-
ministic systems, diffusion has been much studied in
Lorentz gas@3,4#. As more simple models, proper on
dimensional~1D! maps@5–8# and a 2D map@9# have been
introduced, which were built as chains of maps. Refere
@10# showed a relationship between the diffusion coeffici
and microscopic quantities, namely, the Liapunov expon
and the Kolmogorov-Sinai entropy referring to the repell
This was later generalized to other transport coefficients@11#
and the case of small external field@12#. The Liapunov ex-
ponent was independently calculated for the random Lore
gas@13#.

There are systems in which particles can escape in di
tions transversal to the extension of the system, raising in
esting problems@14# in the field of transient chaos@15#, in
particular in the critical case@16,17#. A simple example is a
channel in a mesoscopic system modeled by a strip of L
entz gas with open side boundaries~see Fig. 1!. Particles in
such transiently chaotic or stochastic systems can diffus
the extended direction or directions for some time, and t
escape either through the ends in the extended directio~if
the system is finite! or in the other directions or other way
Therefore, the average period for which they take part
transport is finite, and remains finite even in the limit wh
the size of the system in the extended direction goes to
finity.

Another example with similar behavior is the Trol
Smilansky model for chaotic scattering, consisting of a
infinite periodic array of soft potential valleys, which is
system related to a model of ionization@18,19#. A further
example is the motion in an infinite set of resonances in
phase space of Hamiltonian systems when one consider
particle to escape when it leaves the set of chosen resona
@20#. Diffusion has also been investigated on a chaotic sad
in a model for the interaction of a particle with an electr
static wave packet@21#. In general, particles can also be lo
from the point of view of diffusion by absorption or chem
cal reaction@22#, or in other ways.

The aim of the present paper is to generalize the Gasp
Nicolis formula@10# to the case of the above described tra
PRE 591063-651X/99/59~6!/6552~6!/$15.00
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sient diffusion in deterministic systems. For this purpose,
study how the total escape rate separates to terms relat
the extended direction and the transversal direction. This
vestigation is made in a general way, leading to interest
results for both deterministic and stochastic systems.

II. DESCRIPTION OF THE SYSTEMS

For simplicity the system is assumed to possess one
tended direction with a discrete translational symmetry, a
in most of the considerations here, an inversion symme
that reverses the extended direction. For the sake of co
nience the primitive cells with respect to the translation
symmetry shall be labeled by a discrete variablex that is
monotonic in the extended direction. The rest of the va
ables, specifying the state of the particle, shall be assem
in y. It may be helpful to describe the choice ofx andy in the
case of a strip of Lorentz gas. Here, as generally, it is ea
to study the system in discrete instead of continuous tim
Taking the union of the surfaces of the disks as a Poinc´
surface, the state of the particles on it can be given by
coordinatesx, q, a, and b. x is the ordered label of the
primitive cells of the structure, andq is a label of the disk
inside one primitive cell, as seen in Fig. 1.a is the angle of
position on the disk, andb is the angle of reflection. Theny
corresponds to the vector (q,a,b).

The general evolution equation for the probability dist
bution f t(x,y) of the particle can be written as a mast
equation

f t11~x,y!5 (
j 52J

J

(
y8

wj ,y,y8f t~x2 j ,y8!, ~1!

FIG. 1. Sketch of a strip of Lorentz gas.
6552 ©1999 The American Physical Society
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PRE 59 6553RELATIONSHIPS AMONG COEFFICIENTS IN . . .
where, if y contains continuous variables, one can consi
the sums as integrals over the continuous components or
can use coarse graining with arbitrary precision. Heref t
50 if the argument falls outside the region of the syste
The maximal jumpJ can be assumed to be finite, or th
transition probabilitywj ,y,y8 to decay quickly inj. The trans-
lational symmetry is implied in the form of Eq.~1!, while an
inversion symmetry can be written aswj ,y,y85w2 j ,Ty,Ty8 ,
whereT2y5y for everyy.

Two representative classes of such systems can one
in mind here. The first is a 2D random walk in a strip, f
simplicity assuming no memory, for which

f t11~x,y!5 (
j 52J

J

(
k52K

K

Wk jf t~x2 j ,y2k! ~2!

applies. This can be considered as a rough description o
Lorentz gas strip. The inversion symmetry can be a po
inversion or a line inversion symmetry. 1D walks wi
memory are taken as a second group of examples. Then
~1! can be used, conceivingy as the memory containing, sa
n number of past stepsj 1 , j 2 , . . . ,j n , and wj n11 ,y,y8
5P( j n11u j n , j n21 , . . . ,j 1) is the conditional probability of
the next step. The inversion symmetry implies

P~ j n11u j n , j n21 , . . . ,j 1!

5P~2 j n11u2 j n ,2 j n21 , . . . ,2 j 1!.

The second model was chosen to study the effect of corr
tion between transitions, which is present in the Lorentz
but neglected in the first model.

For general considerations we shall return to Eq.~1!,
taken without restriction to one dimension. For the diffusi
process the long time behavior of the system is importa
That is governed by the leading eigenvectorf of the right
hand side of Eq.~1!, which meansf t'ce2ktf for large t,
wherek is the escape rate. Being an eigenvector,f satisfies
the condition that, starting withf05f, Eq. ~1! gives f1
5e2kf. f shall be called the asymptotic distribution. Th
boundary of the system should also show the symmetry
the region of the system should be defined by independ
conditions inx andy (xPRx andyPRy). If a particle from
a point (x0 ,y0) jumps to a point (x,y), for that y¹Ry , the
particle shall be considered to escape in they direction, while
in caseyPRy but x¹Rx it escapes in thex direction. Corre-
sponding escape rateskx and ky are defined in such a wa
that e2kx (e2ky) is the probability of escape in thex (y)
direction. The conditionyPRy in the definition of escape in
the x direction ensures thatk5kx1ky .

III. SEPARABLE CASES

It is enlightening to study simple cases first. These are
cases in which the asymptotic distribution separates a
product f(x,y)5c(x)v(y). This happens if the transition
probability matrix can be written as a sum of dyadic produ
wjyy85(suj

(s)vyy8
(s) ~this may be a single product, as wel!,

such that the following two conditions hold. First, the eige
value equations constructed from theu components ofwjyy8
have a common eigenvector, namely,( juj

(s)c(x2 j )
r
ne
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5msc(x). Second, for everys the eigenvaluems is maximal
among the eigenvalues of the latter eigenvalue equation.
property shall be denoted bySx . It is easy to see that in this
case the eigenvalue equation in they direction,
(y8svyy8

(s) msv(y8)5e2kv(y), determinesv and e2k. It is
useful to show an example of this property from the class
2D walks @Eq. ~2!#, when the condition forwjyy8 is simpli-
fied asWk j5(sVk

(s)uj
(s) . The example is a walk on a squa

lattice @1,L# ^ @1,M # with transition probability matrix

$Wk j%21,21
1,1 5S 0 q 0

0 r 0

p 0 p
D 5S q

r

0
D s~010!

1S 0

0

p
D s~101!, ~3!

where Eq.~3! also shows howW can be written in terms of
dyadic products. The asymptotic distribution readsf
5sin„px/(L11)…2p/q cos„p/(L11)…y/2sin„py/(M11)….

Another possibility is when the eigenmode is common
y direction, i.e.,(y8vyy8

(s) v(y8)5nsv(y) ~propertySy). Then
( jsuj

(s)nsc(x2 j )5e2kc(x) determinesc and e2k. When
the propertiesSx and Sy are both satisfied, thene2k

5(smsns .
One can obtain the asymptotic distribution on a lar

scale in thex direction in either of the above cases with
separable asymptotic distributionf(x,y)5c(x)v(y). Start-
ing with f0(x,y)5f(x,y), one should obtainf t(x,y)
5c t(x)v(y), where c t(x)5e2ktc(x). It is convenient to
use the normalization(yv(y)51, since then c t(x)
5(yf t(x,y). ~Starting from here,y,y8PRy is assumed!.
Using the latter equation and Eq.~1!, one obtains

c t11~x!5(
j

w̃ jc t~x2 j !, w̃j[(
yy8

wj ,y,y8v~y8!. ~4!

It is obvious from Eqs.~4! that the probability that a particle
at x05x2 j does not escape in they direction in the next step
is e2ky5( j w̃ j[( jyy8wjyy8v(y8), which is independent of
x0. One can separate this escape with the substitutionc t(x)
5e2kytgt(x), which yields gt11(x)5( j w̃ je

kygt(x2 j ).
Since this equation describes a random walk, and the sys
is extended in thex direction, an effective Fokker-Planc
equationgt11(x)5gt(x)1DFPgt9(x) is valid on large scales
Returning toc, it takes the form

c t11~x!5S 11DFP

d2

dx2D e2kyc t~x!. ~5!

Its dominant solution in case of a channel of lengthL is

c t~x!5e2kt sinS p
x

L D , ~6!

and k5p2DFP/L21ky1O(1/L3), where the first and third
term corresponds tokx .
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6554 PRE 59Z. KAUFMANN
Following Ref.@10# in the case of a deterministic proces
the total escape rate can be related to the Liapunov e
nents and the Kolmogorov-Sinai entropy of the repell
namely,k5(l i.0l i2hKS @23,24#. This yields a generaliza
tion of the Gaspard-Nicolis formula@10#

(
l i.0

l i2hKS5k5
p2DFP

L2
1ky1OS 1

L3D . ~7!

A further generalization and an alternative form shall
given at the end of Sec. IV.

Note thatky may also depend onL, as it does in case o
example~3!. This can be seen from the values ofk andkx ,
which can be found exactly for anyL in this example:

e2k54p cos
p

L11
cos

p

M11
1rA2p

q
cos

p

L11
, ~8!

e2kx5122pS 12 cos
p

L11D . ~9!

IV. GENERAL CASES

The general case whenf(x,y)Þc(x)v(y) is more com-
plicated. As we shall see, the main point is thatky(x), the
local probability to escape in they direction, becomes depen
dent onx. However, in the case whenL, the length of the
system in thex direction, is much larger than the size in th
other directions, and there is an inversion symmetry, it s
be shown that, apart from the vicinity of the ends of t
channel, the deviation ofky(x) from a valueky

(`) is propor-
tional to f 9(x)/ f (x). Here f (x) is introduced analogously to
c(x) as f (x)5(yf(x,y) andky

(`) is the value ofky for the
homogeneous solution in the caseL5`. This makes it pos-
sible to write down a proper effective Fokker-Planck equ
tion.

It is suitable to choose a segment I of the system se
rated byx5x1 and x5x2 planes, such that its size is sti
much larger than the transversal size, but much smaller
L. Such a segment ‘‘feels’’ valuesf (x1), and f (x2) of f at its
ends with a common exponential decaye2kt. It is assumed
that the diffusion in the system mixes the contribution
sites with differenty coordinates. So systems are excluded
which the particles from one site cannot fill the whole sy
tem, and thereby different initial distributions can lead
different asymptotic states. With this assumption one
expect that the distribution inside the segment approache
adiabatic distribution iff (x) changes slowly inx. Then the
transversal distributionf(x,y)/ f (x) also changes slowly. So
this adiabatic distribution inside the segment is determi
by the valuesf (x1) and f (x2) and the decay ratek.

Thereby the distribution can have three free paramet
Since the evolution equation~1! is linear in the distribution,
the asymptotic distributionsf and f can be assumed to hav
linear combination forms

f~x,y!5@f (`)~x2x0 ,y!1c1f (1)~x2x0 ,y!

1c2f (2)~x2x0 ,y!#e2kt, ~10!

f ~x!5@11c1f (1)~x2x0!1c2f (2)~x2x0!#e2kt, ~11!
,
o-
,
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-
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where f (k)(x)5(yf
(k)(x,y) for k51 and 2, andx0 is the

center of the segment. Heref (`)(x,y) is independent ofx
and equal to the asymptotic distribution in the limitL→`.
This is just the limit ofv(y). The corresponding escape ra
shall be denoted byky

(`) . f (1) is the asymptotic solution o
Eq. ~1! with antisymmetric boundary conditionsf (x1)5
2 f (x2). This term is responsible for current through th
middle of the segment. Starting with af (`) alone and sym-
metric boundary conditionsf (x1)5 f (x2)5ae2kt, one ob-
serves in general thatf in the middle decays faster or slowe
than on the boundary depending on the sign ofk2ky

(`) . In
the asymptotic state this leads to a hump- or vale-sha
term f (2) in f, which corresponds to somef (2). The partial
distributions can be approximated asf (1)(x2x0)5x2x0 and
f (2)(x2x0)5(x2x0)22b in the vicinity of the middle of
the segment iff (k), k51 and 2 are properly normalized
This means, that the general solution is

f~x,y!5 f ~x0!f (`)~x2x0 ,y!1 f 8~x0!f (1)~x2x0 ,y!

1
f 9~x0!

2
„f (2)~x2x0 ,y!1bf (`)~x2x0 ,y!…

~12!

in the vicinity of the pointx0. The local rate of escape
ky(x0) in the y direction in the middle can be calculated a

12e2ky(x0)5
E~x0!

f ~x0!
, ~13!

E~x0!5(
y

f~x0 ,y!2 (
jyy8

wjyy8f~x0 ,y8!, ~14!

whereE(x0) is the flow of escape in they direction atx0.
Then, clearly,

E~x0!5E` f ~x0!1E1f 8~x0!1
E21bE`

2
f 9~x0!, ~15!

whereEk , k5`,1,2 are constants characteristic off (k), re-
spectively. It can be shown thatE150. To see this one can
separate Eq.~1! into terms related to a transition from th
inside of the chosen segment and a transition from the
side. Conceivingf t(x,y) as a vectorF5$F i% i , where any
value of the indexi corresponds to a point in (x,y) space
inside the segment, and assuming the asymptotic state~i.e.,
f t115e2kf t), one obtainse2kF i5( j w̃i j F j1x i . Here w̃
describes the transitions from inside, andx the transitions
from outside, andw̃ and x can be constructed usingw and
values off outside but near the boundary of the segme
The solution forF is F5(e2kI 2w̃)21x, whereI is the unit
matrix. The boundary conditions are antisymmetric for t
symmetry transformationT in the statef (1); therebyx is
also antisymmetric.w and w̃ are symmetric forT. Conse-
quently F correspondingf (1) and f (1) itself are antisym-
metric. Therefore, Eq.~14! yields E150. Using Eqs.~13!
and ~15! one obtains
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ky~x!5ky
(`)1h

f 9~x!

f ~x!
1OS 1

L3D , ~16!

with a suitable constanth, since for largeL one expectsf 9
5O(L22). The above considerations are not valid near
ends of the channel where the middle of the segment ca
be placed. The interval of their validity shall be denoted
V. Then the analog of the effective Fokker-Planck equat
~5! in V becomes of the form

f t11~x!5S 11DFP

d2

dx2D e2ky(x) f t~x!, ~17!

or, with substitution of Eq.~16!,

f t11~x!5e2ky
(`)S 11~DFP2h!

d2

dx2D f t~x! ~18!

in the interval V. It is plausible to assume that a distributi
corresponding to Eq.~12! sets in earlier in time than th
asymptotic state in the extended direction. After some ti
f (x) is slowly varying inx. Then the considerations in thi
section are valid replacingk in Eqs. ~10! and ~11! with the
local decay rate2 log„f t11(x)/ f t(x)…. So Eqs.~17! and~18!
are also valid for generalf (x) distributions which are still
not in the asymptotic state but which vary slowly inx. Equa-
tion ~18! shall be applied later for such a case, but here
asymptotic distribution is important. It is given by

f t~x!5e2kt cosFsS x

L
2

1

2D G , ~19!

with k5ky
(`)2 log@12(DFP2h)s2/L2#, which is valid in V

with a possible deviation outside V, such thatf t(x) reaches
zero at the ends of the full channel (x50 and x5L11).
Therebys may slightly differ fromp, and Eq.~19! may take
a zero value atj[(12p/s)L/2Þ0 andL112jÞL11. In
the limit L→` the value ofj becomes constant, since th
neighborhood of the end of the channel that is outside V
bounded, and the distribution behaves in it in a well defin
way ~apart from normalization! in this limit. Therefore,s
5p1O(L21) and

k5ky
(`)1

p2~DFP2h!

L2
1OS 1

L3D . ~20!

Using Eqs.~16! and ~19!, one can notice thatky(x) is con-
stant in V. However, the length of the regions outside V
bounded.~This is confirmed by the numerics; see Fig. 2 a
Sec. V!. Therefore, the value ofky(x) in V is a typical value,
which is

k̆y5ky
(`)2

p2h

L2
1OS 1

L3D . ~21!

Note that all escape quantities depend onL except ky
(`) .

From Eqs.~20! and ~21! one obtains the relation of the e
cape rates to the diffusion coefficient

k5
p2DFP

L2
1k̆y1OS 1

L3D . ~22!
e
ot

y
n

e

e

is
d

Equations~20! and ~21! @and thereby Eq.~22!# have been
verified numerically; the results are seen in Fig. 3 and
plained in Sec. V.

By the same arguments as those above Eq.~7!, the latter
equation yields the main result of this paper, a further g
eralization of the Gaspard-Nicolis formula@10#

(
l i.0

l i2hKS5k5
p2DFP

L2
1k̆y1OS 1

L3D . ~23!

Part of Eq.~23! can also be used in the case of stochas
diffusion. Then the right hand side determines howk sepa-
rates to a term related to diffusion in thex direction and
another term related to the transversal escape.

Comparing with the original Gaspard-Nicolis formu
@10#, we can see that the transversal escape~or other way of

FIG. 2. Values ofky(x) for models A~solid line! and B~dashed

line! with L564. The inset shows the decay ofky(x)2k̆y on a
logarithmic scale for model A.

FIG. 3. Test of theL22 decay of escape quantities on a log-lo

scale. For model A,1: (k2ky
(`))/4; 3: k̆y2ky

(`) ; *: ky2ky
(`) .

For model B,L:2(k2ky
(`)); h: k̆y2ky

(`) ; n:ky2ky
(`) . Integer

multipliers are used in two cases, when the values are close~but not

equal! to other values~namely, tok̆y2ky
(`) for model B!.
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6556 PRE 59Z. KAUFMANN
disappearance of the particles! adds a new term to it. How
ever, this term is in general not the global escape rate~con-
trary to the separable cases!, but a typical value of the
x-dependent rate of escape in they direction. That is an im-
portant fact, since the deviation ofk̆y from the corresponding
global escape rateky is of the orderL22, which is compa-
rable to the first term on the right hand side of Eq.~23!. The
differencek̆y2ky can be estimated knowing that it com
from the contribution of the end regions to the global esca
Since the asymptotic distribution~19! after normalization has
a slopeO(L22) at the end regions, these regions give
O(L22) contribution toky . Thereby the above mentione
differences are proportional toL22, and ky shows anL22

decay toky
(`) , similarly to Eq.~21!, as is confirmed by the

numerical tests. Consequently,p2DFP/L2 does not corre-
spond tokx in general.

One more important question is whetherDFP defined as
the coefficient in Eq.~17! is equal to the one defined by th
mean square deviation ofx as * f t(x)(x2x0)2dx/* f t(x)dx
}2Dmsdt, starting from a state concentrated in a vicinity

x0. Introducinggt(x)5eky
(`)t f t(x) in Eq. ~18!, one can elimi-

nate the factor containingky
(`) . Then the equation become

an evolution equation of a diffusion process whose diffus
coefficient

Dmsd5DFP2h ~24!

is clearly equal to the diffusion coefficient defined forf t(x)
by mean square deviation. So we can seeDFP andDmsd are
in general different.

Using Eqs.~21! and~24!, one can obtain another form o
Eq. ~23! in which Dmsd andky

(`) are present instead ofDFP

and k̆y :

(
l i.0

l i2hKS5k5
p2Dmsd

L2
1ky

(`)1OS 1

L3D , ~25!

for which the comments below Eq.~23! apply analogously.

V. NUMERICAL RESULTS

Numerical calculations have been made to test the vali
of Eqs.~17!–~24! in two concrete models. Model A is a 2D
random walk on a square lattice@1,L# ^ @1,M #, with

$Wk j%21,21
1,1 5S 0 0 p

q r q

p 0 0
D . ~26!

The numerical parameters arep50.1, q50.2, r 50.4, and
M54, andL has run over integer powers of 2 from 4 up
4096.

Model B is a 1D random walk with two step memo
such thatP( j t11u j t , j t21)5Rj t j t21

Qj t11 j t
, R1150.45, R21

50.9, Q115 4
9, andQ215 5

9. To ensure symmetry,Q andR
depend only on the product in their subscript.Q111Q21
51; therefore,R describes the probability that the partic
does not escape in they direction, andQ describes the rela
tive probability of the stepsj t11. A possibility was given to
e.

n

n

ty

rest for one step with a probabilityg50.01 without changing
j t , j t21 . L was also chosen to be a power of 2 from 4 un
4096.

In both modelsky(x) has been found to be constant in
middle region V~see Fig. 2!. In the case of model Aky(x)
has been found to decay exponentially tok̆y , reaching the
middle region from either side, with an exponent appro
mately independent ofL. In case of model Bky(x) is con-
stant forx52,3, . . . ,L21, and has different values only a
the endpoints. These support the statement, that the irreg
regions outside V are of bounded length with any choice
the precision demanded for the equations in region V.

For both models Fig. 3 shows thatk, k̆y , andky follow
the L22 decay according to Eqs.~20! and ~21! and the
remark below Eq.~23!. Dmsd5DFP2h, h and DFP have
been calculated from them. Four-digit precision has alre
been reached using results forL5512 and 1024. This has
been improved up to 6 digits fitting a fourth order pol
nomial of L21 to values for L5128, . . .,2048. The
results, in model A—Dmsd50.207942,h50.024545, and
DFP50.232487—and in model B—Dmsd50.197183,
h50.219092, andDFP50.416275—agree with the following
independent calculations ofDmsd and DFP. In both models
Dmsd has been determined with five-digit precision meas
ing ^(x2x0)2& for a well concentrated initial distribution. In
the case of model B,DFP has also been calculated by usin
i (x)5DFP„f (x)2 f (x11)…e2ky(x), wherei (x) is the current
between sites atx and x11. Its result matches the abov
result up to six digits.

VI. SUMMARY

Systems have been studied that are extended in one d
tion ~or more!, such that diffusion is possible. If the system
large and finite, particles escape at the ends. In additio
this escape there is another way of disappearance: esca
the transversal direction or disappearance by adsorptio
chemical reaction. It was shown that this additional disa
pearance of particles adds a nontrivial term to the Gasp
Nicolis formula. This term is in general not a global tran
versal escape rate, but a typical value of the local escape
Also, due to the additional disappearance, the two diffus
coefficients~the one arising in the effective Fokker-Planc
equation and the one defined by mean square deviation! are
in general different. These effects occur not only in chao
diffusion, when the Gaspard-Nicolis formula can be us
but also in stochastic diffusion. In the latter case one par
formulas~23! and ~25! can be used to relatek to the diffu-
sion coefficients.
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