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Relationships among coefficients in deterministic and stochastic transient diffusion
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Systems are studied in which transport is possible due to large extensions with open boundaries in certain
directions, but the particles responsible for transport can disappear from it by leaving it in other directions, by
chemical reaction or by adsorption. The connection of the total escape rate, the rate of the disappearance, and
the diffusion coefficient is investigated. It leads to the observation that the diffusion coefficient defited by
is in general different from the one present in the effective Fokker-Planck equation. The result makes it
possible to generalize the Gaspard-Nicolis forn{ihys. Rev. Lett65, 1693(1990] to this transient case in
deterministic system$S1063-651X99)17005-3

PACS numbd(s): 05.45—-a

I. INTRODUCTION sient diffusion in deterministic systems. For this purpose, we
study how the total escape rate separates to terms related to
Randomness and diffusion are common features of exthe extended direction and the transversal direction. This in-
tended stochastic and chaotic systdhs9]. Among deter- ~ vestigation is made in a general way, leading to interesting
ministic systems, diffusion has been much studied in théesults for both deterministic and stochastic systems.
Lorentz gas[3,4]. As more simple models, proper one-
dimensional(1D) maps[5-8] and a 2D mag9] have been Il. DESCRIPTION OF THE SYSTEMS
introduced, which were built as chains of maps. Reference gq, simplicity the system is assumed to possess one ex-
[10] showed a relationship between the diffusion coefficientenged direction with a discrete translational symmetry, and,
and microscopic quantities, namely, the Liapunov exponen{, most of the considerations here, an inversion symmetry
and the Kolmogorov-Sinai entropy referring to the repeller.iha; reverses the extended direction. For the sake of conve-
This was later generalized to other transport coefficitht$  nience the primitive cells with respect to the translational
and the case of small external fld]ﬁZ]. The Liapunov ex- symmetry shall be labeled by a discrete variaklthat is
ponent was independently calculated for the random Lorentg,gnotonic in the extended direction. The rest of the vari-
gas[13]. _ _ _ __ ables, specifying the state of the particle, shall be assembled
There are systems in which particles can escape in diregp, y. It may be helpful to describe the choicexaiindy in the
tions transversal to the extension of the system, raising intefs5se of a strip of Lorentz gas. Here, as generally, it is easier
esting problem$14] in the field of transient chadsl5], in 5 study the system in discrete instead of continuous time.
particular in the critical casgl6,17. A simple example is a Taking the union of the surfaces of the disks as a Poincare
channel in a mesoscopic system modeled by a strip of Lorgrface, the state of the particles on it can be given by the
entz gas with open side boundarisge Fig. 1 Particles in coordinatesx, g, a, and 8. x is the ordered label of the
such transiently chaotic or stochastic systems can diffuse iBrimitive cells of the structure, ang is a label of the disk
the extended direction or directions for some time, and thekyside one primitive cell, as seen in Fig. d.is the angle of

escape either through the ends in the extended dire@fion position on the disk, ang is the angle of reflection. Thep
the system is finiteor in the other directions or other ways. corresponds to the vectog, B).

Therefore, the average period for which they take part in e general evolution equation for the probability distri-

transport is finite, and remains finite even in the limit Whenbution H(x,y) of the particle can be written as a master
the size of the system in the extended direction goes to inz 0

- €quation
finity.
Another example with similar behavior is the Troll- J
Smilansky model for chaotic scattering, consisting of a 1D braa(XY)= 2 2 Wy d(x—].y"), (1)
infinite periodic array of soft potential valleys, which is a =3y
system related to a model of ionizati¢h8,19. A further
example is the motion in an infinite set of resonances in the
phase space of Hamiltonian systems when one considers thi
particle to escape when it leaves the set of chosen resonance
[20]. Diffusion has also been investigated on a chaotic saddle
in a model for the interaction of a particle with an electro- @
static wave packd®21]. In general, particles can also be lost
from the point of view of diffusion by absorption or chemi- Q
cal reaction22], or in other ways. o
The aim of the present paper is to generalize the Gaspard-
Nicolis formula[10] to the case of the above described tran- FIG. 1. Sketch of a strip of Lorentz gas.

x=2 x=3
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where, ify contains continuous variables, one can considet= ;)(x). Second, for everg the eigenvalugus is maximal
the sums as integrals over the continuous components or 0R3gnong the eigenvalues of the latter eigenvalue equation. This
can use coarse graining with arbitrary precision. Hefe  property shall be denoted IS It is easy to see that in this
=0 if the argument falls outside the region of the systemggse the eigenvalue equation in thg direction,
The maximal jumpJ can be assumed to be finite, or the (s) pso(y') =€ “w(y), determinesw and e . It is

1S 1 .

%
transition probabilityw; , ., to decay quickly ij. The trans- y ey ;
lational symmetry is implied in the form of E1), while an useful to show an example of this property from the class of

) i b . - 2D walks[Eqg. (2)], when the condition fow;y, is simpli-
NVersion symmetry can be written a8y, =W-j 1y +  fied aswi;=VOul . The example is a walk on a square
whereT?y=y for everyy. A S

Two representative classes of such systems can one ke%a&tme[l,L]@[l,M] with transition probability matrix

in mind here. The first is a 2D random walk in a strip, for 0 q o q
simplicity assuming no memory, for which ”
. {Wito1, 0= 0 r O f=| 1 [O(010
. 0 0
Baey)= X X Wyb(x—jy-k (2 PP

j==J k=-K 0
applies. This can be considered as a rough description of the +| 0] O(10D, 3)
Lorentz gas strip. The inversion symmetry can be a point p

inversion or a line inversion symmetry. 1D walks with

memory are taken as a second group of examples. Then E¢here Eq.(3) also shows howV can be written in terms of
(1) can be used, conceivingas the memory containing, say, gyadic products. The asymptotic distribution reads

n number of past stepgi,jz,....n, and w; v =sin(ax/(L+1))2p/q codm/ (L + 1))YZsin(ry/ (M +1)).
=P(jn+1linsin-1, - - - »j1) is the conditional probability of Another possibility is when the eigenmode is common in
the next step. The inversion symmetry implies y direction, i.e.,Ey/vS?,w(y’): vsw(y) (propertyS,). Then
P(i . . Ejsufs)vsw(x—j)=e"‘¢(x) determinesy f’il’l_d e “. When
(neallnndn- - 2) the propertiesS, and S, are both satisfied, there™*
:P(_jn+1|_jn’_jnfla---’_jl)- =ZshsVs-

One can obtain the asymptotic distribution on a large
The second model was chosen to study the effect of correlscale in thex direction in either of the above cases with a
tion between transitions, which is present in the Lorentz gaseparable asymptotic distributiah(x,y) = #(X) w(y). Start-
but neglected in the first model. ing with ¢q(X,y)= &(X,y), one should obtaing(x,y)

For general considerations we shall return to Eb, =(X)w(y), where g (x)=e~“'¥(x). It is convenient to
taken without restriction to one dimension. For the diffusionuse the normalization=,w(y)=1, since then ¢(x)
process the long time behavior of the system is important=ZX,¢(x,y). (Starting from herey,y’ e R, is assumeqd
That is governed by the leading eigenvectpof the right  Using the latter equation and E(.), one obtains
hand side of Eq(1), which meansp,~ce “'¢ for larget,
wherex is the escape rate. Being an eigenvecfpgatisfies
the condition that, starting withpy= ¢, Eq. (1) gives ¢
=e “¢. ¢ shall be called the asymptotic distribution. The
boundary of the system should also show the symmetry, st is obvious from Eqs(4) that the probability that a particle
the region of the system should be defined by independenrdtx,=x—j does not escape in tlyadirection in the next step
conditions inx andy (xeR, andyeR,). If a particle from g e =3W;=3,,,/W,,, (y’), which is independent of
a point (xo,Yo) jumps to a pointX.y), for thaty¢ Ry, the ' One can separate this escape with the substituti¢x)
particle shall be considered to escape inytlrection, while —e %ig,(x), which yields gt+1(x)=2j\7vje“ygt(x—j).

in caz_eye Ry bUIX‘ftRX I ezcapes |ndtr:c§{ dlc;e_ctlon. r?orre— Since this equation describes a random walk, and the system
sponding escape ratas and «, are defined In Such a Way s ayiended in thex direction, an effective Fokker-Planck

thate™*x (e™*v) is the probability of escape in the (y) : _ Moy .
direction. The conditiory € R, in the definition of escape in equationg, .1 (x) =g,(x) + Depd; (x) is valid on large scales.
y Returning toy, it takes the form

the x direction ensures that= «,+ «y .

V(0 =2 Wh(x=), Wi=2 wiyye(y'). @
yy

d2
1+ DFP&) e "Yi(x). 5

Ill. SEPARABLE CASES 1 (X)=

It is enlightening to study simple cases first. These are the
cases in which the asymptotic distribution separates as s dominant solution in case of a channel of lenbtfs
product ¢(x,y) = ¢(X) w(y). This happens if the transition
probability matrix can be written as a sum of dyadic products
wjyy,=ESuJ(s)v§Sy), (this may be a single product, as well
such that the following two conditions hold. First, the eigen-
value equations constructed from theomponents ofvj,,,  and k= 7?Dgp/L?+ ky+O(1/L3), where the first and third

have a common eigenvector, nameI)E,-u}S)t,//(x—j) term corresponds ta,.

: (6)

X
P(x)=e "~ sin( L
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Following Ref.[10] in the case of a deterministic process, where f(x) =3, 6®(x,y) for k=1 and 2, andx, is the
the total escape rate can be related to the Liapunov expeenter of the segment Hewt™)(x,y) is independent ok
nents and the Kolmogorov-Sinai entropy of the repeller,and equal to the asymptotic distribution in the lirhit- o,
namely,k= X, o\ —hgs [23,24. This yields a generaliza- This is just the limit ofw(y). The corresponding escape rate
tion of the Gaspard Nicolis formulgL0] shall be denoted by“”) ¢ is the asymptotic solution of

Eq. (1) with antlsymmetnc boundary condition§(x,) =
m°Dep 1 —f(x,). This term is responsible for current through the
KZO Ni—hgs= K= L2 Kky+O (7) " middle of the segment. Starting with¢™ alone and sym-
' metric boundary condition$(x;)=f(x,)=ae ~, one ob-
A further generalization and an alternative form shall beserves in general that in the middle decays faster or slower

given at the end of Sec. IV. than on the boundary depending on the S|gn<ef;<y In
Note thatx, may also depend oh, as it does in case of the asymptotic state this leads to a hump- or vaIe -shaped
example(3). This can be seen from the valuesiofindx,,  term ) in f, which corresponds to somg(?). The partial
which can be found exactly for arlyin this example: distributions can be approximated #8)(x—x,) =x— X, and
f)(x—xg) = (x—%p)?—b in the vicinity of the middle of
e ™ ™ 2p ™ the segment if¥, k=1 and 2 are properly normalized.
—4pcosL+1 COSM +1 +r FCOSL+1 ® This means, that the general solution is
= () (x— ' D)y —
ekle_zp( 1 cos | ©  SEN=T00) X x0,y) + (X0 $D X x0,)

LS ( D ($O (% x0,y) + BE (X X0,¥))

(12

IV. GENERAL CASES

The general case whefi(X,y) # ¢(X) w(y) is more com-
plicated. As we shall see, the main point is tig(x), the
local probability to escape in thedirection, becomes depen-
dent onx. However, in the case when the length of the
system in thex direction, is much larger than the size in the
other directions, and there is an inversion symmetry, it shall 1— o RylXo E(Xo)
be shown that, apart from the vicinity of the ends of the f(Xg) '
channel, the deviation of,(x) from a valuex{ is propor-
tional to f”(x)/f(x). Heref(x) is introduced analogously to
¥(x) asf(x)==,¢(x,y) and«{”) is the value ofk, for the E(x0)=2 ¢(X0,Y)— 2 Wiy d(Xo,y'), (14
homogeneous solution in the cadse «. This makes it pos- y vy’
sible to write down a proper effective Fokker-Planck equa-
tion. where E(Xp) is the flow of escape in thg direction atx,.

It is suitable to choose a segment | of the system sepalFhen, clearly,
rated byx=x; and x=Xx, planes, such that its size is still
much larger than the transversal size, but much smaller than 2+ bE,

L. Such a segment “feels” valueix,), andf(x,) of f at its E(Xo)=Exf(Xo) +Esf'(Xg) + ———1"(x0), (19
ends with a common exponential deaay*'. It is assumed

that the diffusion in the system mixes the contribution of
sites with differenty coordinates. So systems are excluded in

which the particles from one site cannot fill the whole sys- spectwslygt(;;am tbe tshown tlhftld_? Tot see :h's cfane C?hn
tem, and thereby different initial distributions can lead to>€parate Eqil) nto terms relgted 1o a transition from the

different asymptotic states. With this assumption one CaIJ]nSIde of the chosen segment and a transition from the out-
expect that the distribution inside the segment approaches &ide: Conceivings(x,y) as a vectod ={®;}; , where any
adiabatic distribution iff (x) changes slowly in. Then the Value of the index corresponds to a point inx(y) space
transversal distributio(x,y)/f(x) also changes slowly. So inside the segment, and assuming the asymptotic &tate
this adiabatic distribution inside the segment is determined?t+1=€" “¢;), one obtaine™ “®;=X; Wi+ x; . Herew
by the valuesf(x,) andf(x,) and the decay rate. describes the transitions from |nS|de apdhe transitions
Thereby the distribution can have three free parametersrom outside, andv and y can be constructed using and
Since the evolution equatiofl) is linear in the distribution, values of¢ outside but near the boundary of the segment.
the asymptotic distributiong andf can be assumed to have The solution ford is ® = (e~ *I —w) "1y, wherel is the unit
linear combination forms matrix. The boundary conditions are ar&i)symmetric for the
) R symmetry transformatio in the state¢'™’; thereby y is
PY) =L (X X0,y) €1 (X X0,Y) also antisymmetricw andw are symmetric forT. Conse-
+ ¢ (x—xq,y)Je” ", (100  quently ® correspondings® and ¢ itself are antisym-
metric. Therefore, Eq(14) yields E;=0. Using Egs.(13)
f(X)=[1+c fM(x—xg) +co,f P (x—x0)]Je !, (11)  and(15) one obtains

in the vicinity of the pointx,. The local rate of escape
ky(Xo) in they direction in the middle can be calculated as

(13

whereE,, k=,1,2 are constants characteristicg, re-
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( ) f/I(X) 1 044 T 1 1 I I I
X)=ky '+ +0| =/, 16

Ky( ) Ky 77 f(X) L ( ) 042 i A
with a suitable constang, since for largelL one expectdg” 04 -

=0(L"?). The above considerations are not valid near the .
ends of the channel where the middle of the segment canno®-38 [
be placed. The interval of their validity shall be denoted by '
V. Then the analog of the effective Fokker-Planck equation 0-36
(5) in V becomes of the form

0.34
d2
fira(X)={ 1+ DFPE) e YW, (x), (17 0.32
. T 0.3
or, with substitution of Eq(16),
d2 0 28 1 | 1 1 1 1
_ :
fii(x)=e""y | 1+(Dep—7) @) f(x) (18) 0 10 20 30 40 50 X 60

inthe | IV Itis pl ibl h distributi FIG. 2. Values ofk,(x) for models A(solid line) and B(dashed
in the interval V. It is plausible to assume that a distri utlon"ne) with L=64. The inset shows the decay @;(x)—fcy on a

corresponding to Eq(12) sets in earlier in time than the logarithmic scale for model A
asymptotic state in the extended direction. After some time '

f(x).is slowly \{arying iqx. Then the considerations in this Equations(20) and (21) [and thereby Eq(22)] have been
section are valid replacing in Egs.(10) and(11) with the \qrified numerically; the results are seen in Fig. 3 and ex-
local decay rate-log(f;,1(x)/fi(x)). So Eqs(17) and(18) plained in Sec. V.

are also valid for generdi(x) distributions which are still By the same arguments as those above (B .the latter
not in the asymptotic state but which vary slowlyxnEqua-  oquation yields the main result of this paper, a further gen-
tion (18) shall be applied later for such a case, but here thealization of the Gaspard-Nicolis formua0]

asymptotic distribution is important. It is given by

x_1 > Ai—hys= _TDee v ol L 23
f(x)=e Cos{o L~ 5) , (19 o i~ Mks= K= L2 Ky L3 (23
with k= K§,°°)_|og[1_(DFP_ 7)o?/L?], which is valid in V Part of Eq.(23) can also be used in the case of stochastic

with a possible deviation outside V, such thatx) reaches diffusion. Then the right hand side determines hewepa-
zero at the ends of the full channet£0 andx=L+1). rates to a term related to diffusion in thedirection and
Therebyo may slightly differ fromar, and Eq(19) may take ~ another term related to the transversal escape.

a zero value af=(1—m/o)L/2#0 andL+1—&é#L+1. In Comparing with the original Gaspard-Nicolis formula
the limit L—o the value ofé becomes constant, since the [10], we can see that the transversal esa@pether way of
neighborhood of the end of the channel that is outside V is

bounded, and the distribution behaves in it in a well defined T T
way (apart from normalizationin this limit. Therefore,o 01
=7+0(L™ Y and [
(b ) 1 0.01 ¢
wy, T \Upp™ 7 I
K=K§/ ) 4 T-‘FO(F) (20 0.001

0.0001 |
Using Egs.(16) and(19), one can notice that,(x) is con- [

stant in V. However, the length of the regions outside V is 10°°
bounded(This is confirmed by the numerics; see Fig. 2 and

S ; 108
Sec. V). Therefore, the value of,(x) in V is a typical value, [
which is 107 |
2 8 [
o 10°° E
k=" T ol = 21 :

ey =)= E (D) S

10 100 1000 |
Note that all escape quantities depend lorexcept «(*). N
From Egs.(20) and (21) one obtains the relation of the es-  FIG. 3. Test of the.~* decay of escape quantities on a log-log

cape rates to the diffusion coefficient scale. For model At (k—«{)/4; X1 ry= {5 ky—x(
) For model B0 :2(k—«{?); 00 ky—«{?; Arky— {7 . Integer
7D 1 I Ny y~ Ky y~ Ky
K= _FP+ k4ol =1, (22) multipliers are used in two cases, when the values are ¢ngaot
L? y L3 equa) to other valuegnamely, tox,— «{) for model B.
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disappearance of the particlemdds a new term to it. How- rest for one step with a probability=0.01 without changing

ever, this term is in general not the global escape (ete- j,,j;—;. L was also chosen to be a power of 2 from 4 until
trary to the separable cagsedut a typical value of the 4096.
x-dependent rate of escape in theirection. That is an im- In both models«,(x) has been found to be constant in a

portant fact, since the deviation &f from the corresponding  middle region V(see Fig. 2 In the case of model Ac(x)
global escape rate, is of the orderL 2, which is compa- has been found to decay exponentiallyp, reaching the
rable to the first term on the right hand side of E28). The  middle region from either side, with an exponent approxi-
difference k,— x, can be estimated knowing that it comes mately independent df. In case of model Be,(x) is con-
from the contribution of the end regions to the global escapestant forx=2,3,... L —1, and has different values only at
Since the asymptotic distributid9) after normalization has the endpoints. These support the statement, that the irregular
a slopeO(L"?) at the end regions, these regions give anregions outside V are of bounded length with any choice of
O(L~?) contribution tox,. Thereby the above mentioned the precision demanded for the equations in region V.
differences are proportional to~2, and xy shows anL ™2 For both models Fig. 3 shows that ;<y, and, follow
decay to:<§°°), similarly to Eq.(21), as is confirmed by the the L~2 decay according to Eqg20) and (21) and the
numerical tests. Consequently;?Dgp/L? does not corre- remark below Eq.(23). Dyns=Dgp— 7, 7 and Dgp have
spond tok, in general. been calculated from them. Four-digit precision has already
One more important question is whetHep, defined as been reached using results for=512 and 1024. This has
the coefficient in Eq(17) is equal to the one defined by the been improved up to 6 digits fitting a fourth order poly-
mean square deviation of as [f,(X)(x—X,)2dx/ff,(x)dx  nomial of L' to values for L=128,...2048. The
«2Dmed, Starting from a state concentrated in a vicinity of results, in model A-B,s~0.207942, =0.024545, and

Xo- Introducinggt(x)=e"s(/x)tft(x) in Eq. (18), one can elimi- Drp=0.232487—and in  model  BB.—=0.197183,
nate the factor containing{™ . Then the equation becomes 7=0.219092, an®gp=0.416275—agree with the following

an evolution equation of a diffusion process whose diffusior"déPendent calculations @ psq and Dep. In both models
coefficient D .sq has been determined with five-digit precision measur-

ing {(x—Xg)?) for a well concentrated initial distribution. In
Dmse=Drp— 7 (24)  the case of model BDgp has also been calculated by using
i(X)=Dgp(f(X)— f(x+1))e”v®, wherei(x) is the current
is clearly equal to the diffusion coefficient defined fg(x) between sites ax and x+1. Its result matches the above
by mean square deviation. So we can Bgg andD,,qare  result up to six digits.
in general different.

Using Egs.(21) and(24), one can obtain another form of VI. SUMMARY
Eq. (23) in which D g and K are present instead @fgp Systems have been studied that are extended in one direc-
and ky tion (or more, such that diffusion is possible. If the system is
5 large and finite, particles escape at the ends. In addition to
Dy (=) this escape there is another way of disappearance: escape in
> N—hgs=k= +x{?+0| =], (29 sa ) ,
N0 L3 the transversal direction or disappearance by adsorption or

chemical reaction. It was shown that this additional disap-
pearance of particles adds a nontrivial term to the Gaspard-
Nicolis formula. This term is in general not a global trans-
versal escape rate, but a typical value of the local escape rate.
V. NUMERICAL RESULTS Also, due to the additional disappearance, the two diffusion

Numerical calculations have been made to test the vaIiditff‘oefﬁ‘.Jiems(the one arising in the effective Fokker-P[anck
of Egs.(17)—(24) in two concrete models. Model A is a 2D _equatlon an(_j the one defined by mean square de_v)amm .
random walk on a square lattifa,L]o[1,M], with in general different. These effects occur not only in chaotic

diffusion, when the Gaspard-Nicolis formula can be used,
0 0 p but also in stochastic diffusion. In the latter case one part of
formulas(23) and(25) can be used to relate to the diffu-
11 —
Wigt-1-2=1 9 7 a]. 20 sion coefficients,
p 0O O

for which the comments below E3) apply analogously.
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